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Introduction

Definition (Cause)

A variable X is a cause of a variable Y
if Y in any way relies on X for its value.

Why study causation?

I We need to make sense of data to guide actions and to learn
from our success and failures.

e.g. Is malaria transmitted by mosquitoes or air?
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SCM

SCM (Structural Causal Models)

I U : A set of exogenous variables
(external; not to explain how they are caused)

I V : A set of endogenous variables
(descendant of an exogenous variable)

I F : A set of functions which assign values of variables in V
based on the other variables.

If we know U , then we can perfectly determine V using F .

e.g. SCM 2.2.1 (School Funding, SAT scores, College Acceptance)

U = {UX , UY , UZ}, V = {X,Y, Z}, F = {fX , fY , fZ}

fX : X = UX , fY : Y =
x

3
+ UY , fZ : Z =

y

16
+ UZ
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DAGs

Why graphs?

I Graphs help us to capture the probabilistic information
visually that is embedded in a SCM.

(Mathematical) graph is a collection of nodes (X, Y , Z) and
edges (A, B).
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DAGs

Directed Acyclic Graphs (DAGs)

If edges are arrows, then they are directed.
When a directed path exists from a node to itself : cyclic

No cycles in a graph : acyclic.

I X is a parent (direct cause) of Y , Z is a child of Y .

I X and Y are ancestors of Z, Y and Z are descendants of X.
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Product Decomposition

P (x1, x2, ..., xn) =
∏
i

P (xi|pai)

where pai stands for the values of parents of variable Xi.

Causal Markov condition

A variable is conditionally independent of its non-descendants
given its parent variables.



8/18

Product Decomposition

e.g.

P (X = x, Y = y, Z = z)
= P (X = x)P (Y = y|X = x)P (Z = z|Y = y)
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Graphical Rules (Chains, Forks, Colliders)

d-separation
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Chains

The configuration of variables —
three nodes and two edges, with one edge directed into and one
edge directed out of the middle variable — is called a chain.

P (X,Y, Z) = P (X)P (Y |X)P (Z|Y )

P (X,Y, Z) = P (X)P (Y |X)P (Z|X,Y ) (Bayes’)

=⇒ P (Z = z|Y = y) = P (Z = z|X = x, Y = y) ∀x, y, z

Thus Z and X are independent, conditional on Y
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Chains

Rule 1 (Conditional Independence in Chains)
Two variables, X and Z, are conditionally independent given Y ,
if there is only one unidirectional path between X and Z
and Y is any set of variables that intercepts that path.

Z and X are independent, conditional on Y
For all x, y, z, P (Z = z|X = x, Y = y) = P (Z = z|Y = y)
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Forks

The configuration of variables —
three nodes with two arrows emanating from the middle variable —
is called a fork.

P (X,Y, Z) = P (X)P (Y |X)P (Z|X)

P (X,Y, Z) = P (X)P (Y |X)P (Z|X,Y ) (Bayes’)

=⇒ P (Z = z|X = x) = P (Z = z|X = x, Y = y) ∀x, y, z

Thus Z and Y are independent, conditional on X
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Forks

Rule 2 (Conditional Independence in Forks)
If a variable X is a common cause of variables Y and Z,
and there is only one path between Y and Z,
then Y and Z are independent conditional on X.

Y and Z are independent, conditional on X
For all x, y, z, P (Y = y|Z = z,X = x) = P (Y = y|X = x)
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Colliders

The configuration contains a collider node, if one node receives
edges from two other nodes.

P (X,Y, Z) = P (X)P (Y )P (Z|X,Y )

P (X,Y, Z) = P (X)P (Y |X)P (Z|X,Y ) (Bayes’)

=⇒ P (Y = y) = P (Y = y|X = x) ∀x, y, z

Thus X and Y are independent.
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Colliders

Rule 3 (Conditional Independence in Colliders)
If a variable Z is the collider node between two variables X and Y ,
and there is only one path between X and Y ,
then X and Y are unconditionally independent but are dependent
conditional on Z and any descendants of Z.

X and Y are dependent, conditional on Z
For some x, y, z, P (Y = y|X = x, Z = z) 6= P (Y = y|Z = z)
e.g. Z = X + Y
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d-separation
Definition (A blocked path)
A path p is blocked by a variable B

if and only if

p contains

1. a chain A→ B → C or a fork A← B → C
such that the middle node B is conditioned on,
or

2. a collider A→ B ← C such that the collision node B is not
conditioned, and no descendant of B is conditioned.



17/18

d-separation

I Two nodes A and B are{
d-separated iff every path between them is blocked.

d-connected iff even one path between them is unblocked.

Remark

If X and Y are d-separated conditional on Z,
then X is statistically independent of Y given Z.
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Model Testing and Causal Search

I How to test models locally?

e.g.

Suppose we believe
S (a data set) might have generated G (a graph; a model).

G : Two variables X and Y are independent conditional on Z.
S : No, they are not.
→ Reject G as a possible causal model for S.


